Climate change adaptation in Eastern Mediterranean: Desert Dust Storms and the EU LIFE project MEDEA

CLIMATICO 2019 INTERNATIONAL CONFERENCE, LIMASSOL, CYPRUS

11 APRIL 2019

SOUZANA ACHILLEOS, SC.D. CYPRUS UNIVERSITY OF TECHNOLOGY

WWW.LIFE-MEDEA.EU

Arctic F	olar 🗧 🔷			
Arctic Polar	- 1	An	tic Polar	
	10 10 10 10 10 10 10 10 10 10 10 10 10 1	and the second sec		1 State 1
	200	Gob	45	
Great Basin	Column 1	Syrian		
	Sanara	and an	51	
Forthis Ten	- Andrews	- M	S.A.	
Earth S Ten	y 🐪		Cak- W	Sec. 1
Largest Deserts				12 1
	Kalahari —			
<i>[</i>			Great	1×
Patagonian – 📿 –				a di Tan
				2
	Antarctic Polar	(source: https://geology.	com/records/largest-dese	ert.shtml)

Major Deserts of the World							
Name	Type of Desert	Surface Area	Location				
Antarctic	Polar	5.5 million mi ²	Antarctica				
Arctic	Polar	5.4 million mi ^a	Alaska, Canada, Greenland, Iceland, Norway, Sweden, Finland, Russia				
Sahara	Subtropical	3.5 million mi ^a	Northern Africa				
Arabian	Subtropical	1 million mi ²	Arabian Peninsula				
Gobi	Cold Winter	500,000 mi ²	China and Mongolia				
Patagonian	Cold Winter	260,000 mi²	Argentina				
Great Victoria	Subtropical	250,000 mi²	Australia				
Kalahari	Subtropical	220,000 mi ²	South Africa, Botswana, Namibia				
Great Basin	Cold Winter	190,000 mi ²	United States				
Syrian	Subtropical	190.000 mi ²	Svria Iraq Jordan Saudi Arabia				

Largest deserts in the world

Mean African dust contributions to PM_{10} across the Mediterranean increases from NW to SE (over 2001-2011) (Pey et al.2013)

WWW.LIFE-MEDEA.EU

Dust Storms in EMME

Crete: during the winter and spring, background PM₁₀ levels exceeded the daily EU limit in 1 out of 5 days, with 80– 100% of the cases linked to dust storms (et al. 2006) Gerasopoulos

Cyprus: 24-hr PM10 background average can exceed 100 µg/m3 (Achilleos et al. 2014)

Israel: hourly contribution can reach to 1000-5197 $\mu g/m3$ (Krasnov et al. 2014)

Desert Dust Storms – Health Effects

Epidemiological studies have associated desert dust particles with:

- Mortality due to respiratory and cardiovascular disease
- Respiratory (e.g., worsening of asthmatic symptoms in children and adults, decreased lung function) and cardiovascular (e.g., arrhythmias, stroke) morbidity
- Pregnancy and reproduction
- Allergic exacerbations
- Other infectious diseases
- (e.g., conjunctivitis, meningitis)

(Zhang et al. 2016)

Figure 3. Schematic drawing of desert dust-related human diseases in different organs.

#	Study	Study area	Years	Trends analysis
1	Chudnovsky et al. 2017	Iraq	1997-2010	↑ trend of AOD
2	Evan et al. 2016	Sahara	1851-2011	\downarrow trend over the 21 st century
3	Krasnov et al. 2016	Israel (Beer Sheva, Rehovot, Modi'in)	2001-15	 ↑ in PM10 concentrations during dust storms , especially over the last 5 years ↓ of number of dust days per year
4	Ganor et al. 2010	Israel	1958-2006	↑ average rate of 2.7 days per decade (in association with changing synoptic conditions)
5	Pey et al. 2013	Spain, France, Italy, Greece, Bulgaria, Cyprus	2001-2011	1) no significant trend of African dust contribution to PM_{10} over central and southern Mediterranean areas, with sporadic annual peaks 2) \downarrow trend on PM_{10} contribution was observed from 2006 or 2007 through 2011 in northern western and central Mediterranean areas
6	Flentze et al. 2015	Hohenpeiβenberg, Schneefernerhaus, Germany	1997-2013	No significant trend of annual number of Saharan dust days ↓ contribution of dust days to PM10
7	Achilleos et al. 2014	Nicosia, Cyprus	1998-2008	↑ of annual dust storm days

Dust Storm Trends

Factors contributing to the future of dust storms (Goudie 2014):

 anthropogenic modification of desert surfaces (increase desert surface temperature, wind velocity)

onatural climatic variability

ochanges in climate by global warming (rainfall, temperature)

WW.LIFE-MEDEA.EU

Dust Storm Trends

Changes in surface dust concentration, NDVI, wind speed, RH, temperature, and precipitation by country

Years: 2001-2017

Dust Storms in EMME

Dust Storms in EMME

(KeepTalkingGreece, 24/3/2018)

allergies .. "

Dust Storms in EMME

Mail, 8/9/2015)

"Over 600 Israelis were treated by the Magen David Adom (MDA) last week for symptoms related to the extreme weather." (BreakingIsraelNews, 13/9/2015)

/WW.LIFE-MEDEA.EU

Dust Events and EU Public Health Policy

NASA Worldview image 8th September 2015

Cyprus

Current Status

Crete

Impossible to control natural sources

Dust Storms in EMME

- Difficult to control sources of transboundary air pollution
- Impossible to predict
- Circulation of non-standardised guidelines
- Advice to stay indoors and reduce outdoor activities

Up to date, no good scientific data regarding:

- Effectiveness of guidelines Is exposure truly reduced?
- Public health impact Are health effects truly reduced?

7

MEDEA objectives

- 1. Demonstrate the feasibility of applying models for **early forecasting of dust** events and timely **notification of the public**, targeting susceptible individuals.
- 2. Design easy to implement and sustainable **exposure-reduction** recommendations to follow during dust storms.
- 3. Provide **evidence** for the development of a strategic plan for mitigation of health effects of dust events through **exposure reduction**.
- 4. **Transfer efficiently the results** to competent authorities, scientific community, social stakeholders and citizens and network with target bodies in other dust storms-exposed regions.

Forecasting and Early Warning

Feasibility assessment for the accurate and timely forecasting of Dust events in three countries (at least three days before).

Forecasting and Early Warning

WWW.LIFE-MEDEA.EU

18

Forecasting and Early Warning

Life MEDEA <update@life-medea.eu> Mon 4/8/2019 8:55 PM Mark as unread

User achrysanthou updated forecast for country Cyprus with values: - 08/04/2019: Severity 1

- 09/04/2019: Severity 1
- 10/04/2019: Normal
- 11/04/2019: Normal
- WWW.LIFE-MEDEA.EU

19

MEDEA App

Exposure Reduction Guidelines

Development of simple and sustainable evidence-based guidelines for **Dust Events:**

- 1. Limit time outdoors
- 2. Limit physical activity
- 3. Reduction of exposure in indoor spaces
 - Reduce infiltration
 - Air-cleaners (Houses and Classrooms): Removal of particulate matter, air pollutants, microbes/bacteria and odours of indoor space

Assess compliance to guidelines by the participants

The participants will be wearing a smart wristband for the study period February – May 2019/2020, which records:

- Pulse rate
- Blood pressure
- Physical activity
- Calories
- GPS

MEDEA study populations

Patient recruitment from two susceptible populations:

- Asthmatic children (Crete- Greece, Cyprus)
- Atrial Fibrillation patients (Crete- Greece, Cyprus, Israel)

Participants will be trained in MEDEA guidelines.

exposure

exposure

Early warning messages dust events (mobile application, text and email).

Evaluation of guidelines' compliance and effectiveness.

Recruitment of Asthmatic Kids

CY: 6 primary schools

- 1800 students
- · 45 asthmatic children identified

GR: 8 primary schools

- 1210 students
- · 78 asthmatic children identified

Adults with Atria Fibrillation (AF)

Adults with pacemaker will be recruited from arrhythmia clinics at:

- a) SCRC Beer-Sheba-Israel (n=156),
- b) University Hospital Heraklion-Crete (n=156)
- c) General Hospital in Nicosia-Cyprus (n=156)

Recruitment of AF patients

CY: Nicosia and Limassol General Hospital

• 50 eligible patients identified

GR: Heraklion University Hospital

- · 35 eligible patients identified
- IL: Soroka Clinical Center
 - · 35 eligible patients identified

Assessment of Health Outcomes Children with Asthma

Outcomes assessed at baseline and then at every 1 month throughout the high 4-month dust period

Primary Outcome

 Telephone Asthma Control Test (ACT)

Secondary Outcomes

- Asthma medication use
- Unscheduled visits to health professionals for asthma

Childhood Asthma Control Test for children 4 to 11 years.

Assessment of Health Outcomes Children with Asthma

Secondary Outcomes

 Lung function (Spirometry) and fractional exhaled nitric oxide (FeNO), will be assessed at baseline, middle and end of high dust season

WWW.LIFE-MEDEA.EU

Assessment of Health Outcomes Adults with AF

Outcomes assessed continuously during the study period, throughout the high dust period

Primary Outcomes – every detected high atrial frequency episode of >330 ms (180 beats per minute)

Secondary Outcomes

- occurrence of ventricular arrhythmias assessed through the pacemaker
- arterial blood pressure measured continuously with the smart wrist band averaged for each 24-h period and
- heart rate variability

Assessment of Health Outcomes Adults with AF

Secondary Outcomes

Phone interviews every 1 month throughout the high dust period recording:

- change in medication use
- unscheduled visits to health professionals for heart
 - arrhythmias/episodes
- AFEQT Questionnaire assessing quality of life and symptoms of fatigue

Atrial Fibrillation Effect on QualiTy-of-life (AFEQT) Questionnaire

<u>Section 1.</u> Occurrence of atrial fibrillation Name or ID:______ Are you currently in atrial fibrillation? ☐ Yes ☐ No IF No, when was the last time you were aware of having had an episode of atrial fibrillation? (Please check <u>one</u> answer which best describes your situation)

__earlier today __within the past week __within the past month __1 month to 1 year ago __ more than 1 year ago __I was never aware of having atrial fibrillation

<u>Section 2.</u> The following questions refer to how atrial fibrillation affects your quality of life. On a scale of 1 to 7, over the <u>past 4 weeks</u>, as a result of your artial fibrillation, how much were you bothered by (Please circle *care* number which best describes your situation)

		Not at all bothered Or I did not have this symptom	Hardly bothered	A little bothered	Moderately bothered	Quite a bit bothered	Very bothered	Extremely bothered
1.	Palpitations: Heart fluttering, skipping or racing	1	2	3	4	5	6	7
2.	Irregular heart beat	1	2	3	4	5	6	7
3.	A pause in heart activity	1	2	3	4	5	6	7
4.	Lightheadedness or dizziness	1	2	3	4	5	6	7

Air Quality Assessment

- Indoor and outdoor PM10 and PM2.5 samples from a random subgroup of participants' households and classrooms
 - During dust and non-dust events through the high dust storm period (February-May)
- 2. Home questionnaires and time activity diaries

MEDEA Policy Implications

Following the evaluation of MEDEA practices

- Dust storm forecasting on a systematic and permanent basis
- Maintenance of internet platform early warning dissemination
- Incorporation of MEDEA practices in public policies
- Transfer of MEDEA guidelines and Practices to other countries

